Manganese Peroxidase-Dependent Oxidation of Glyoxylic and Oxalic Acids Synthesized by Ceriporiopsis subvermispora Produces Extracellular Hydrogen Peroxide.

نویسندگان

  • U Urzúa
  • P J Kersten
  • R Vicuña
چکیده

The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; CO(2) evolution was monitored after addition of exogenous [C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO(2) from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isothermal titration calorimetry uncovers substrate promiscuity of bicupin oxalate oxidase from Ceriporiopsis subvermispora

Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzyme-catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (C...

متن کامل

Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes th...

متن کامل

Characterization of Ceriporiopsis subvermispora bicupin oxalate oxidase expressed in Pichia pastoris.

Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enz...

متن کامل

Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora.

The ligninolytic machinery of the widely used model fungus Ceriporiopsis subvermispora includes the enzymes manganese-peroxidase (MnP) and laccase (Lcs). In this work the effect of Mn(II) on the secretion of MnP was studied. Cultures grown in the absence of Mn(II) showed high levels of mnp transcripts. However, almost no MnP enzyme was detected in the extracellular medium, either by enzymatic a...

متن کامل

Archives of Biochemistry and Biophysics

The kinetics of Mnoxalate formation and decay were investigated in reactions catalyzed by manganese peroxidase (MnP) from the basiomycete Ceriporiopsis subvermispora in the absence of externally added hydrogen peroxide. A characteristic lag observed in the formation of this complex was shortened by glyoxylate or catalytic amounts of Mn or hydrogen peroxide. MnP titers had a minor effect on this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 1998